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Bases for Eigenspaces

Let A be an n × n matrix. The eigenvalues {λ1, . . . , λk} of
A are the roots of the polynomial pA(λ) = det(A− λIn)
(Theorem 5.9).
For each eigenvalue λj of A, we have

Eλj = {~x ∈ Rn : A~x = λj~x}.

This is the same as saying that

Eλj = NS(A− λj In).

Therefore, we can find a basis for each eigenspace of A
using the technique for finding the basis of a null space
described in Chapter 3.

Math 231 Section 5.2, 5.3, and 5.4



Bases for Eigenspaces

Let A be an n × n matrix. The eigenvalues {λ1, . . . , λk} of
A are the roots of the polynomial pA(λ) = det(A− λIn)
(Theorem 5.9).
For each eigenvalue λj of A, we have

Eλj = {~x ∈ Rn : A~x = λj~x}.

This is the same as saying that

Eλj = NS(A− λj In).

Therefore, we can find a basis for each eigenspace of A
using the technique for finding the basis of a null space
described in Chapter 3.

Math 231 Section 5.2, 5.3, and 5.4



Bases for Eigenspaces

Let A be an n × n matrix. The eigenvalues {λ1, . . . , λk} of
A are the roots of the polynomial pA(λ) = det(A− λIn)
(Theorem 5.9).
For each eigenvalue λj of A, we have

Eλj = {~x ∈ Rn : A~x = λj~x}.

This is the same as saying that

Eλj = NS(A− λj In).

Therefore, we can find a basis for each eigenspace of A
using the technique for finding the basis of a null space
described in Chapter 3.

Math 231 Section 5.2, 5.3, and 5.4



Multiplicity

Each eigenvalue λj of a matrix A has a multiplicity mλj

which is equal to the number of times the factor (λ− λj)
occurs in the factorization of pA(λ).
We have mλ1 + mλ2 + · · ·+ mλk = n, because pA(λ) is a
polynomial of degree n.
Also, for each eigenvalue λj , we have 1 ≤ dim Eλj ≤ mλj

(Theorem 5.17).
Some of the λj may be complex numbers. So far, we’ve
only dealt with finding eigenvectors for the real
eigenvalues.
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Multiplicity and Diagonalization

If all of the eigenvalues {λ1, . . . , λk} of A are real, then Rn

has a basis consisting of eigenvectors of A if and only if
dim Eλj = mλj for every eigenvalue λj . (Theorem 5.27)
If this is the case, we say A is diagonalizable over R.
If B is the basis of Rn consisting of eigenvectors of A and
f : Rn → Rn is the linear transformation defined by A, then
D = [f ]BB is a diagonal matrix.
Moreover, D = P−1AP, where P is the n × n matrix whose
columns are the eigenvectors in the basis B. (Theorem
5.28)
A matrix that has at least one non-real eigenvalue is not
diagonalizable over R. It may, however, be diagonalizable
over C, the set of complex numbers.
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Complex Numbers

Theorem 5.19: Addition and multiplication in C satisfy the
following properties:

1 Addition is commutative and associative in C.
2 Multiplication is commutative and associative in C.
3 Multiplication distributes over addition.
4 0 ∈ C is the additive identity and 1 ∈ C is the multiplicative

identity.
5 For all γ = α+ βi ∈ C, the number −γ = −α− βi satisfies
γ+(−γ) = (−γ)+ γ = 0. (−γ is the additive inverse of γ.)

6 For all nonzero γ = α+ βi ∈ C, the number γ−1 =
γ

|γ|2
satisfies γγ−1 = γ−1γ = 1. (γ−1 is the multiplicative
inverse of γ.)

The above properties show that C is a field.

Math 231 Section 5.2, 5.3, and 5.4



Complex Diagonalization

A real n × n matrix A not only defines a linear
transformation f : Rn → Rn. A also defines a linear
transformation fC : Cn → Cn.
If A has at least one complex eigenvalue, then Rn will not
have a basis of eigenvectors for A. However, Cn might
have such a basis.
The matrix A will be diagonalizable over C if Cn has a basis
of eigenvectors of A (Theorem 5.27).
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