Section 5.2, 5.3, and 5.4

Math 231

Hope College

Math 231 Section 5.2, 5.3, and 5.4

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Bases for Eigenspaces

- Let *A* be an $n \times n$ matrix. The eigenvalues $\{\lambda_1, \ldots, \lambda_k\}$ of *A* are the roots of the polynomial $p_A(\lambda) = \det(A \lambda I_n)$ (Theorem 5.9).
- For each eigenvalue λ_j of A, we have

$$\boldsymbol{E}_{\lambda_j} = \{ \vec{\mathbf{x}} \in \mathbb{R}^n : \boldsymbol{A}\vec{\mathbf{x}} = \lambda_j \vec{\mathbf{x}} \}.$$

This is the same as saying that

$$E_{\lambda_j} = \mathrm{NS}(A - \lambda_j I_n).$$

• Therefore, we can find a basis for each eigenspace of *A* using the technique for finding the basis of a null space described in Chapter 3.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Let *A* be an $n \times n$ matrix. The eigenvalues $\{\lambda_1, \ldots, \lambda_k\}$ of *A* are the roots of the polynomial $p_A(\lambda) = \det(A \lambda I_n)$ (Theorem 5.9).
- For each eigenvalue λ_j of A, we have

$$\boldsymbol{E}_{\lambda_j} = \{ \vec{\mathbf{x}} \in \mathbb{R}^n : \boldsymbol{A}\vec{\mathbf{x}} = \lambda_j \vec{\mathbf{x}} \}.$$

This is the same as saying that

$$\boldsymbol{E}_{\lambda_j} = \mathrm{NS}(\boldsymbol{A} - \lambda_j \boldsymbol{I}_n).$$

• Therefore, we can find a basis for each eigenspace of *A* using the technique for finding the basis of a null space described in Chapter 3.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Let *A* be an $n \times n$ matrix. The eigenvalues $\{\lambda_1, \ldots, \lambda_k\}$ of *A* are the roots of the polynomial $p_A(\lambda) = \det(A \lambda I_n)$ (Theorem 5.9).
- For each eigenvalue λ_j of A, we have

$$\boldsymbol{E}_{\lambda_j} = \{ \vec{\mathbf{x}} \in \mathbb{R}^n : \boldsymbol{A}\vec{\mathbf{x}} = \lambda_j \vec{\mathbf{x}} \}.$$

This is the same as saying that

$$E_{\lambda_j} = \mathrm{NS}(A - \lambda_j I_n).$$

• Therefore, we can find a basis for each eigenspace of *A* using the technique for finding the basis of a null space described in Chapter 3.

ヘロン ヘアン ヘビン ヘビン

- Each eigenvalue λ_j of a matrix *A* has a multiplicity m_{λ_j} which is equal to the number of times the factor $(\lambda \lambda_j)$ occurs in the factorization of $p_A(\lambda)$.
- We have $m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_k} = n$, because $p_A(\lambda)$ is a polynomial of degree n.
- Also, for each eigenvalue λ_j , we have $1 \leq \dim E_{\lambda_j} \leq m_{\lambda_j}$ (Theorem 5.17).
- Some of the λ_j may be complex numbers. So far, we've only dealt with finding eigenvectors for the real eigenvalues.

イロト 不得 とくほ とくほ とうほ

- Each eigenvalue λ_j of a matrix *A* has a multiplicity m_{λ_j} which is equal to the number of times the factor $(\lambda \lambda_j)$ occurs in the factorization of $p_A(\lambda)$.
- We have $m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_k} = n$, because $p_A(\lambda)$ is a polynomial of degree n.
- Also, for each eigenvalue λ_j , we have $1 \leq \dim E_{\lambda_j} \leq m_{\lambda_j}$ (Theorem 5.17).
- Some of the λ_j may be complex numbers. So far, we've only dealt with finding eigenvectors for the real eigenvalues.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Each eigenvalue λ_j of a matrix *A* has a multiplicity m_{λ_j} which is equal to the number of times the factor $(\lambda \lambda_j)$ occurs in the factorization of $p_A(\lambda)$.
- We have $m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_k} = n$, because $p_A(\lambda)$ is a polynomial of degree n.
- Also, for each eigenvalue λ_j , we have $1 \leq \dim E_{\lambda_j} \leq m_{\lambda_j}$ (Theorem 5.17).
- Some of the λ_j may be complex numbers. So far, we've only dealt with finding eigenvectors for the real eigenvalues.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Each eigenvalue λ_j of a matrix *A* has a multiplicity m_{λ_j} which is equal to the number of times the factor $(\lambda \lambda_j)$ occurs in the factorization of $p_A(\lambda)$.
- We have $m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_k} = n$, because $p_A(\lambda)$ is a polynomial of degree n.
- Also, for each eigenvalue λ_j , we have $1 \leq \dim E_{\lambda_j} \leq m_{\lambda_j}$ (Theorem 5.17).
- Some of the λ_j may be complex numbers. So far, we've only dealt with finding eigenvectors for the real eigenvalues.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- If all of the eigenvalues {λ₁,...,λ_k} of *A* are real, then ℝⁿ has a basis consisting of eigenvectors of *A* if and only if dim *E*_{λi} = *m*_{λi} for every eigenvalue λ_i. (Theorem 5.27)
- If this is the case, we say A is **diagonalizable over** \mathbb{R} .
- If \mathcal{B} is the basis of \mathbb{R}^n consisting of eigenvectors of A and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by A, then $D = [f]_{\mathcal{B}}^{\mathcal{B}}$ is a diagonal matrix.
- Moreover, D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors in the basis B. (Theorem 5.28)
- A matrix that has at least one non-real eigenvalue is not diagonalizable over ℝ. It may, however, be diagonalizable over ℂ, the set of complex numbers.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- If all of the eigenvalues {λ₁,...,λ_k} of *A* are real, then ℝⁿ has a basis consisting of eigenvectors of *A* if and only if dim *E*_{λ_i} = *m*_{λ_i} for every eigenvalue λ_j. (Theorem 5.27)
- If this is the case, we say A is **diagonalizable over** \mathbb{R} .
- If \mathcal{B} is the basis of \mathbb{R}^n consisting of eigenvectors of A and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by A, then $D = [f]_{\mathcal{B}}^{\mathcal{B}}$ is a diagonal matrix.
- Moreover, D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors in the basis B. (Theorem 5.28)
- A matrix that has at least one non-real eigenvalue is not diagonalizable over ℝ. It may, however, be diagonalizable over ℂ, the set of complex numbers.

イロト 不得 とくほ とくほ とうほ

- If all of the eigenvalues {λ₁,...,λ_k} of *A* are real, then ℝⁿ has a basis consisting of eigenvectors of *A* if and only if dim *E*_{λ_i} = *m*_{λ_i} for every eigenvalue λ_j. (Theorem 5.27)
- If this is the case, we say A is **diagonalizable over** \mathbb{R} .
- If \mathcal{B} is the basis of \mathbb{R}^n consisting of eigenvectors of A and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by A, then $D = [f]_{\mathcal{B}}^{\mathcal{B}}$ is a diagonal matrix.
- Moreover, D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors in the basis B. (Theorem 5.28)
- A matrix that has at least one non-real eigenvalue is not diagonalizable over ℝ. It may, however, be diagonalizable over ℂ, the set of complex numbers.

<ロ> (四) (四) (三) (三) (三) (三)

- If all of the eigenvalues {λ₁,...,λ_k} of *A* are real, then ℝⁿ has a basis consisting of eigenvectors of *A* if and only if dim *E*_{λ_i} = *m*_{λ_i} for every eigenvalue λ_j. (Theorem 5.27)
- If this is the case, we say A is **diagonalizable over** \mathbb{R} .
- If \mathcal{B} is the basis of \mathbb{R}^n consisting of eigenvectors of A and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by A, then $D = [f]_{\mathcal{B}}^{\mathcal{B}}$ is a diagonal matrix.
- Moreover, D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors in the basis B. (Theorem 5.28)
- A matrix that has at least one non-real eigenvalue is not diagonalizable over ℝ. It may, however, be diagonalizable over ℂ, the set of complex numbers.

<ロ> (四) (四) (三) (三) (三) (三)

- If all of the eigenvalues {λ₁,...,λ_k} of *A* are real, then ℝⁿ has a basis consisting of eigenvectors of *A* if and only if dim *E*_{λ_i} = *m*_{λ_i} for every eigenvalue λ_j. (Theorem 5.27)
- If this is the case, we say A is **diagonalizable over** \mathbb{R} .
- If \mathcal{B} is the basis of \mathbb{R}^n consisting of eigenvectors of A and $f : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by A, then $D = [f]_{\mathcal{B}}^{\mathcal{B}}$ is a diagonal matrix.
- Moreover, D = P⁻¹AP, where P is the n × n matrix whose columns are the eigenvectors in the basis B. (Theorem 5.28)
- A matrix that has at least one non-real eigenvalue is not diagonalizable over ℝ. It may, however, be diagonalizable over ℂ, the set of complex numbers.

ヘロン 人間 とくほ とくほとう

Theorem 5.19: Addition and multiplication in \mathbb{C} satisfy the following properties:

- Addition is commutative and associative in \mathbb{C} .
- 2 Multiplication is commutative and associative in \mathbb{C} .
- Multiplication distributes over addition.
- **3** $0 \in \mathbb{C}$ is the additive identity and $1 \in \mathbb{C}$ is the multiplicative identity.
- So For all $\gamma = \alpha + \beta i \in \mathbb{C}$, the number $-\gamma = -\alpha \beta i$ satisfies $\gamma + (-\gamma) = (-\gamma) + \gamma = 0$. $(-\gamma \text{ is the additive inverse of } \gamma.)$
- For all nonzero γ = α + βi ∈ C, the number γ⁻¹ = γ/|γ|²
 satisfies γγ⁻¹ = γ⁻¹γ = 1. (γ⁻¹ is the multiplicative inverse of γ.)

The above properties show that \mathbb{C} is a **field**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- A real *n* × *n* matrix *A* not only defines a linear transformation *f* : ℝⁿ → ℝⁿ. *A* also defines a linear transformation *f*_ℂ : ℂⁿ → ℂⁿ.
- If A has at least one complex eigenvalue, then ℝⁿ will not have a basis of eigenvectors for A. However, ℂⁿ might have such a basis.
- The matrix A will be diagonalizable over C if Cⁿ has a basis of eigenvectors of A (Theorem 5.27).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- A real *n* × *n* matrix *A* not only defines a linear transformation *f* : ℝⁿ → ℝⁿ. *A* also defines a linear transformation *f*_ℂ : ℂⁿ → ℂⁿ.
- If A has at least one complex eigenvalue, then ℝⁿ will not have a basis of eigenvectors for A. However, ℂⁿ might have such a basis.
- The matrix *A* will be diagonalizable over \mathbb{C} if \mathbb{C}^n has a basis of eigenvectors of *A* (Theorem 5.27).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A real *n* × *n* matrix *A* not only defines a linear transformation *f* : ℝⁿ → ℝⁿ. *A* also defines a linear transformation *f*_ℂ : ℂⁿ → ℂⁿ.
- If A has at least one complex eigenvalue, then ℝⁿ will not have a basis of eigenvectors for A. However, ℂⁿ might have such a basis.
- The matrix A will be diagonalizable over C if Cⁿ has a basis of eigenvectors of A (Theorem 5.27).

・ 同 ト ・ ヨ ト ・ ヨ ト …